Effects of Magnesium stearate on Tablet Properties

Douglas Nelson, Rebecca Wu, Kate Wymbs

dnelson@ix.netcom.com rebe10358@gmail.com kawymbs91@comcast.net
BIG PICTURE

• Rutgers Pharmacy: Dr. Kalyana Pingali

Overall Goal ➔ To decrease the time for a drug to take effect.
OUR OBJECTIVE

• LUBRICANTS...? THE GOOD AND THE BAD:
 - prevent powder from sticking and building up in machines
 - decrease the effectiveness of the active drug

Goal: To find the ideal amount of lubricant that will maximize drug efficiency and production safety.
METHOD

• 1%, 2% 3% MgSt

• Other ingredients: acetaminophen, avicel, pharmatose, cab-o-sil

• Blend, Sieve, Shear, Tablet Press

• Tested the tablets for certain properties...
Method: Play by Play
IDEAL TABLET PROPERTIES

1. Uniformity \rightarrow low standard of deviation of weight and hardness

2. Low Hydrophobicity \rightarrow
 high solvent penetration rate

3. High Dissolution \rightarrow
 high percent of drug release
UNIFORMITY

• **Obj**: Complete homogeneity, consistency of weight, and high hardness.

 - *Blend/sieve the powder mixture thoroughly*
 - *Balance—Record weight*
 - *Hardness Test*
IDEAL TABLET PROPERTIES

1. Uniformity ➔
 Weight: ✭
 Hardness.

2. Low Hydrophobicity ➔

3. High Dissolution ➔
Tablet Hardness

<table>
<thead>
<tr>
<th>% MgSt</th>
<th>Hardness (N)</th>
<th>Hardness RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175.88</td>
<td>0.085062</td>
</tr>
<tr>
<td>2</td>
<td>154.52</td>
<td>0.090114</td>
</tr>
<tr>
<td>3</td>
<td>127.38</td>
<td>0.110977</td>
</tr>
</tbody>
</table>
Tablet Hardness

<table>
<thead>
<tr>
<th>% MgSt</th>
<th>Hardness (N)</th>
<th>Hardness RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175.88</td>
<td>0.085062</td>
</tr>
<tr>
<td>2</td>
<td>154.52</td>
<td>0.090114</td>
</tr>
<tr>
<td>3</td>
<td>127.38</td>
<td>0.110977</td>
</tr>
</tbody>
</table>

Conclusion: 1% MgSt yields harder tablets at a higher consistency.
IDEAL TABLET PROPERTIES

1. Uniformity ➔
 Weight:
 Hardness.

2. Low Hydrophobicity ➔

3. High Dissolution ➔
HYDROPHOBOICITY

- **Obj**: Low hydrophobicity so drugs may dissolve faster.

Washburn equation $\Rightarrow \frac{\eta}{C\rho^2 \gamma \cos \theta} = \frac{t}{m^2}$

Hydrophobicity $= \frac{t}{m^2}$

Hydrophobicity is the slope of the plot of time vs. m^2.
Hydrophobicity Between Different Concentrations of Magnesium Stearate as a Function of Mass of Aborption Squared and Time

3% MgSt: $y = -31088x + 21.92$

2% MgSt: $y = 1240.4x + 4.7818$

1% MgSt: $y = 44.152x + 2.9342$
Hydrophobicity

Conclusion: 1% MgSt absorbs the most liquid (Thus, least hydrophobic).
IDEAL TABLET PROPERTIES

1. Uniformity ➔
 Weight: 🟢
 Hardness:

2. Low Hydrophobicity ➔

3. High Dissolution ➔
Dissolution

• *Obj*: High dissolution for quicker drug release.

Dissolution = rate tablet dissolves
More tablet dissolves – more drug released

Dissolution depicts the effectiveness of the lubricant
• **Result:** 1% MgSt has the highest drug release.
IDEAL TABLET PROPERTIES

1. Uniformity →
 Weight: ✭
 Hardness: ✭

2. Low Hydrophobicity →

3. High Dissolution →
CONCLUSION

• 1% MgSt:
 - Least variability in tablet hardness, highest hardness
 - Least variability in tablet weight
 - Least hydrophobicity
 - Highest dissolution rate
 - Nearly double the amount of drug released after 30 mins (compared to 2% or 3% blends)
Thank You!

Effects of MgSt on Tablet Properties

Douglas Nelson, Rebecca Wu, Kate Wymbs

dnelson@ix.netcom.com rebe10358@gmail.com kawymbs91@comcast.net